Recommender System Using Collaborative Filtering Algorithm
نویسندگان
چکیده
............................................................................................................................................ 5 Introduction ...................................................................................................................................... 6 The vehicle (the website) .......................................................................................................................... 6 Motivation ................................................................................................................................................. 6 Why is it important? .................................................................................................................................. 8 goals and objectives .................................................................................................................................. 8 Background and Related Work ........................................................................................................ 9 Traditional Collaborative Filtering ........................................................................................................... 9 User-based Collaborative Filtering: .................................................................................................... 10 Item-based Collaborative Filtering: .................................................................................................... 11 Model-based Collaborative Filtering .................................................................................................. 12 Search based Methods ............................................................................................................................. 13 Amazon’s item-to-item collaborative filtering........................................................................................ 13 Program Requirements ................................................................................................................... 15 web architecture ...................................................................................................................................... 16 Flow chart of System Structure ........................................................................................................... 16 Home ................................................................................................................................................... 17 My account .......................................................................................................................................... 17 Post ...................................................................................................................................................... 17 Database Structure: ................................................................................................................................. 18 ER Diagram ........................................................................................................................................ 18 Relational diagram .............................................................................................................................. 19 User Interface .......................................................................................................................................... 24 Implementation .............................................................................................................................. 27 How it Works .......................................................................................................................................... 27 Technologies/Tools were used ................................................................................................................ 28 Challenges ...................................................................................................................................... 28 Item Features ....................................................................................................................................... 28 Image Storage ...................................................................................................................................... 29 4 New User and New Item Problem .................................................................................................. 29 Results, Evaluation, and Reflection ................................................................................................. 30 Conclusions and Future Work ........................................................................................................ 31 Bibliography ................................................................................................................................... 33 Glossary .......................................................................................................................................... 35
منابع مشابه
A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملA New WordNet Enriched Content-Collaborative Recommender System
The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملDesign a Hybrid Recommender System Solving Cold-start Problem Using Clustering and Chaotic PSO Algorithm
One of the main challenges of increasing information in the new era, is to find information of interest in the mass of data. This important matter has been considered in the design of many sites that interact with users. Recommender systems have been considered to resolve this issue and have tried to help users to achieve their desired information; however, they face limitations. One of the mos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015